EXAMPLE

Let a,b be the roots of the equation $x^2+13x-2=0$, then find the quadratic equation whose roots are $\frac{a}{a+10}$ and $\frac{b}{b+10}$.

A)
$$-32x^2 + 134x - 2 = 0$$

C) $111x^2 - 9x - 2 = 0$

$$B) 32x^2 + 134x - 2 = 0$$

$$D) 111x^2 + 9x + 2 = 0$$

Concepts tested: Transformation of equation

Answer: A)
$$-32x^2 + 134x - 2 = 0$$

Solution:

Let $y=\frac{x}{x+10}$, where x can take values a,b. Then $xy+10y=x \implies x=\frac{10y}{1-y}$. On substituting the value of x in $x^2+13x-2=0$, we get

$$\left(\frac{10y}{1-y}\right)^2 + 13\left(\frac{10y}{1-y}\right) - 2 = 0$$
$$100y^2 + 13(10y)(1-y) - 2(1-y)^2 = 0$$
$$-32y^2 + 134y - 2 = 0.$$

Writing this in terms of the variable x, we get $-32x^2 + 134x - 2 = 0$.

Common mistakes:

• If you tried to find the new equation by using the exact roots of the given equation, it will lead you to a lot of additional, complicated calculations.